skip to main content


Search for: All records

Creators/Authors contains: "Park, Suji"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. Abstract

    Heterostructures obtained from layered assembly of 2D materials such as graphene and hexagonal boron nitride have potential in the development of new electronic devices. Whereas various materials techniques can now produce macroscopic scale graphene, the construction of similar size heterostructures with atomically clean interfaces is still unrealized. A primary barrier has been the inability to remove polymeric residues from the interfaces that arise between layers when fabricating heterostructures. Here, the interface cleaning problem of polymer‐contaminated heterostructures is experimentally studied from an energy viewpoint. With this approach, it is established that the interface cleaning mechanism involves a combination of thermally activated polymer residue mobilization and their mechanical actuation. This framework allows a systematic approach for fabricating record large‐area clean heterostructures from polymer‐contaminated graphene. These heterostructures provide state‐of‐the‐art electronic performance. This study opens new strategies for the scalable production of layered materials heterostructures.

     
    more » « less
  4. Abstract

    Magnetism in topological materials creates phases exhibiting quantized transport phenomena with potential technological applications. The emergence of such phases relies on strong interaction between localized spins and the topological bands, and the consequent formation of an exchange gap. However, this remains experimentally unquantified in intrinsic magnetic topological materials. Here, this interaction is quantified in MnBi2Te4, a topological insulator with intrinsic antiferromagnetism. This is achieved by optically exciting Bi‐Te p states comprising the bulk topological bands and interrogating the consequent Mn 3d spin dynamics, using a multimodal ultrafast approach. Ultrafast electron scattering and magneto‐optic measurements show that the p states demagnetize via electron‐phonon scattering at picosecond timescales. Despite being energetically decoupled from the optical excitation, the Mn 3d spins, probed by resonant X‐ray scattering, are observed to disorder concurrently with the p spins. Together with atomistic simulations, this reveals that the exchange coupling between localized spins and the topological bands is at least 100 times larger than the superexchange interaction, implying an optimal exchange gap of at least 25 meV in the surface states. By quantifying this exchange coupling, this study validates the materials‐by‐design strategy of utilizing localized magnetic order to manipulate topological phases, spanning static to ultrafast timescales.

     
    more » « less